Semiparametric Methods for the Generalized Linear Model
نویسنده
چکیده
منابع مشابه
Generalized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کاملSemiparametric Generalized Linear Models: Bayesian Approaches
Generalized linear models are one of the most widely used tools of the data analyst. However, the model assumes that the structure of the regression relationship between the response and the covariates is linear on a known transformed scale. We focus here on diierent methods to perform the same type of analyses. These involve using nonparametric models to determine the relationship between the ...
متن کاملMoment Estimation in a Semiparametric Generalized Linear Model
In this article, we propose to estimate the regression parameters in a semiparametric generalized linear model by moment estimating equations. These estimators are shown to be consistent and asymptotically normal. We present two estimators of the nonparametric part, provide conditions for the existence and uniform consistency, and obtain faster rates of convergence under weaker assumptions.
متن کاملEfficient Estimation of Population-Level Summaries in General Semiparametric Regression Models
This article considers a wide class of semiparametric regression models in which interest focuses on population-level quantities that combine both the parametric and the nonparametric parts of the model. Special cases in this approach include generalized partially linear models, generalized partially linear single-index models, structural measurement error models, and many others. For estimatin...
متن کاملSemiparametric models for missing covariate and response data in regression models.
We consider a class of semiparametric models for the covariate distribution and missing data mechanism for missing covariate and/or response data for general classes of regression models including generalized linear models and generalized linear mixed models. Ignorable and nonignorable missing covariate and/or response data are considered. The proposed semiparametric model can be viewed as a se...
متن کامل